ITERi projekti lehelt:
Seni parimad saavutused:
The experimental programmes on JET and TFTR have come closest to "breakeven" - more power out of the plasma than goes in. The record to date is on JET, where 16 MW of fusion power has been produced for 1-2 s. The injected power from plasma heating at that time was about 24 MW, so the power amplification (Q) of the plasma was 0.6, i.e no net gain.
Of course, to run the plasma and experimental facility, at that time, the site electric power requirement was ~ 100 MW, so for any successful fusion plant Q has to be much larger than in JET.
ITERilt loodetakse saada:
ITER will produce about 500 MW of fusion power in nominal operation, for pulses of 400 seconds and longer. Typical plasma heating levels duriung the pulse are expected to be about 50 MW, so power amplification (Q) is 10. Thus during the pulse the ITER plasma will create more energy than it consumes.
Järgmine projekt ehk töötav DEMO versioon:
Thirdly, its fusion power will be about 6 times larger than ITER, while attempts will be made to keep plant power consumption figures ITER-like. This should enable the plant following ITER to generate about 1300 MW electrical, of which the consumer should see about 1000 MW of reliable electrical power.
Põhiline probleem on kõrge temperatuuri hoidmine ja see võib ulmelises tulevikus ehk lahenduse leida ning vajalikud energiad lähevad suurusjärke väiksemaks
Veel mõned arvud (kui keegi viitsib, võib üle kontrollida).
kui kasutada lihtsalt 0,1c liikuva 3E16 vesiniku aatomi energia leidmiseks valemit E = mv2, sain ma 23 kJ ning kui see hulk tuleb sekundis, siis 23 kW võimsust. Seda ei ole eriti palju, kui arvestada et käesoelval hetkel läheks vaja 50 MW energiat.
Impulss, mida see hulk vesiniku aatomeid kosmoselaevale annab on 1,5 g*m/s ja 20 tonnise laeva kiirendus selle mõjul peaks olema 7,6E-8 m/s2. Seega tõesti mitte just eriti suur mõju.